首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   18篇
  国内免费   12篇
  2023年   8篇
  2022年   14篇
  2021年   12篇
  2020年   9篇
  2019年   16篇
  2018年   27篇
  2017年   11篇
  2016年   14篇
  2015年   16篇
  2014年   40篇
  2013年   40篇
  2012年   25篇
  2011年   29篇
  2010年   26篇
  2009年   34篇
  2008年   20篇
  2007年   21篇
  2006年   13篇
  2005年   11篇
  2004年   10篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   9篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有504条查询结果,搜索用时 171 毫秒
1.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
2.
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.  相似文献   
3.
4.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   
5.
Investigations have been carried out on the influence of membrane lipid composition and physical state on acyl-CoA: 1-acyl-glycerol-3-phosphoethanolamine O-acyltransferase activity in rat liver plasma membranes. The lipid composition of the membranes was modified either by way of lipid transfer proteins or by partial delipidation with exogenous phospholipases and subsequent enrichment of the membranes with different phospholipids. The results indicated that membrane rigidification by enrichment of the membranes with DPPC or SM reduced the transfer of oleic and palmitic acid to lysophosphatidylethanolamine, whereas all phospholipids inducing membrane fluidization lead to acyltransferase activation. The eventual role of membrane fluidity in the deacylation-reacylation cycle is discussed.  相似文献   
6.
H. Gerbling  B. Gerhardt 《Planta》1988,174(1):90-93
Carnitine-acyltransferase activity assayed with acetyl-CoA, octanoyl-CoA, or palmitoyl-CoA is associated with the mitochondrial but not with the peroxisomes of mung-bean hypocotyls. Using mitochondria as an enzyme source, a half-maximal reaction rate is obtained with a palmitoyl-CoA concentration approximately twice that required with acetyl-CoA. In the presence of a saturating acetyl-CoA concentration the carnitine-acyltransferase activity is not enhanced by palmitoyl-CoA as additional substrate. However, palmitoylcarnitine is formed in addition to acetylcarnitine, and the formation of acetylcarnitine is competitively inhibited by palmitoyl-CoA. It is concluded that the mitochondria of mung-bean hypocotyls possess a carnitine acyltransferase of broad substrate specificity with respect to the chainlength of the acyl-CoA and that the demonstration of a carnitine-palmitoyltransferase activity in plant mitochondria does not indicate the presence of a specific carnitine long-chain acyltransferase.  相似文献   
7.
8.
9.
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure–function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.  相似文献   
10.
The activity of 1-acylglycerophosphocholine (1-acyl-GPC) O-acyltransferase (EC 2.3.1.23) varied during maturation of safflower (Carthamus tinctorius L.) seeds, and activity per seed was highest in the middle period of seed development when triacylglycerol (TAG) is most rapidly synthesized. The specific activity of acyl transfer in a 20000·g particulate preparation exceeded 500nmol·min-1·(mg protein)-1 and was higher than those of any other enzymes involved in TAG synthesis (K. Ichihara et al., 1993, Plant Cell Physiol. 34, 557–566). This suggested the presence of a large flux of acyl-CoA to phosphatidylcholine in the cell. The reaction was specific to C16 and C18 acyl-CoAs with a double bond at position 9. Lauroyl- and erucoyl-CoA were completely ineffective, while ricinoleoyl- and elaidoyl-CoA were utilized efficiently. The relative order of specificity for native acyl-CoA species was linoleoyl > oleoyl stearoyl = palmitoyl. When acyl-CoA mixtures were presented, preference for the unsaturated species rather than the saturated species was even more apparent. The enzyme preferentially utilized 1-C16-acyl- and 1-C18-acyl-GPC molecular species, and 1-palmitoyl-, 1-stearoyl-, 1-oleoyl-and 1-linoleoyl-GPC equally served as acyl acceptor. No activity was detected with 1-octanoyl-GPC, and 1-erucoyl-GPC produced little effect. The effectiveness of 1-alkyl-GPC was comparable to that of 1-acyl-GPC. It was thus concluded that the enzyme recognizes the chain lengths of the acyl donor and acceptor, and the double bond at position 9 of the acyl donor.Abbreviations DAG diacylglycerol - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GP sn-glycerol 3-phosphate - GPC sn-glycero-3-phosphocholine - GPE sn-glycero-3-phosphoethanolamine - GPI sn-glycero-3-phosphoinositol - PC phosphatidylcholine - TAG triacylglycerol  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号